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ABSTRACT

A method, called the Eigensystem Realization Algorithm (Ef 5 developed
for modal parameter identification and model reduction of dynamic systems from
test data. A new approach is introduced in conjunction with the singular vzlue
decomposition technique to derive the basic formulation of minimum order
realization which is an extended version of the Ho-Kalman aigorithm. The basic
“ormulation is then transformed into modal space for modal parameter identifica-
tion. Two accuracy indicators are developed to quantitatively identify the
system modes and noise modes. For illustration of the algorithm, examples are

shown using simulation data and experimental data for a rectangular grid struc-
ture.

I. INTRCIUCTION

The state space model has received considerable attention for system
analyses and design in recent control and systems research programs One of
these areas, in particular, is control of large space structures. In order to
design controls for a dynamic system it is ne.essary to have a mathematical
model which will adequately describe the system's motion. The process of
constructing a state space representation from experimental data is called
system realization.

Diring the past two decades, numerous algorithms for the construction of
state space representations of 1linear systems have appeared in the control
literature. Among the first were the works of Gilbert (1] and Kalman (2],
introducing the important principles of realization theory in terms of the
concepts of controllability and observability. Both techniques use the transfer
function matr‘x to solve the realization problem. Ho and Kalman [3] approached
+his problem from a new viewpoint. They showed that the minimum realization
problem is equivalent to a representation problem invclving a sequence of real
matrices known as Markov parameters (pulse response functions). By ninimum
realization is meant the smallest state-space dimension among systems realized
that has the same input-output relations within a specified degree of accuracy.
Questions regarding the minimum realization from various types of input-output
data and the generation of minimum partial realization are studied by Tether
(4], Silverman [5], and Rossen and lapidus [6] using Markov .-~ ~oeters. Rossen
and lapidus [7] successfully applied Ko~Kalman [3] and Tether [4] methods to
chemical engineering systems. A common weakness of the above schemes is that
effects of noise on the data analysis were not evaluated. Zeiger and McEwen
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[8] proposed a combinition of the Ho-Kalman algorithm [3] with the singular
value decomposition technique for the triatment of noisy date However, no
theoretical or numerical studies were reported in Reference [#7  mong follow-
up developments along similar lines, Kung [9] presented anc algorithm in
conjunction with the singular value decomposition technique t> /ncorporate the
presence of the noise. Note that the singular value decomsusition technique
(10-11] has been widely re-ragnized as being very effect’ve and numerically
stable. Although several techniques of minimum realization are available in the
literature, formal direct application to the modal parameter identification for
flexible structures was not yet addressed.

In the structures fieiu, the finite-element technique is used almost
exclusive:ly for constructing analytical models. This approach is well estab-
lished and normally provides a model accurate enough for structural design
purposes. Once the structure is built, static and dynamic tests are performed.
These tes. results are used to refine the finite-element model, which is then
use* for=final analyses. This traditional approach to analytical model devel-
opment may not be accurate enough for use in designing a vibration control
system for flexible structures. Another approach is to realize 3 model directly
from the experimental results. This requires the construction of a minimum-
order model from the test data that characterizes the dynamics of the System
at the selected control and measurement positions. The present state-of-the-art
in structural modal testing and data analysis is cune of controversy about the
best technique to use. Classical test techniques, which may provide only good
frequency and moderate mode shape accuracy, are often considered adequate for
finite-element model verification purposes, On the other hand, advanced data
araiysis techniques which offer significant reductions in test time and improved
accuracy , have been available [12-16] but are not yet fully used. For example,
Ibrahim [13] presented a method based on state space for the direct idenrtifica-
tion of modal parameters from free responses. Recently, Void and Russell [16]
presented a method using frequency response functions and time domain analysis
which can also identify repeated eigenvalues. A comparison of contempurary
methods using data from tne Galileo spacecraft test is provided by Chen [17].

Although structural dynamics techniques are generally successful for ground
data, further incorporation with work from the controls discipline is needed to
solve modal parameter identification/control problem. For example, it is known
from control theory [18] that a system with repeated eigenvalues and independent
mode shapes is not identifiavle by single input and single ouput. Methods
which aliows only one initiai condition (input) at a time [13], will miss
repeated eigenvalues. Also, if the reaiized system is not of 2 minimum order
and matrix inversion is used for constructing an overs>ized state matrix,
numerical errors may become dominant,

Under the interaction of structure and control disciplines, the objective
of this paper is to introduce an Eigensysiem Realizaticn Algorithm (ERA) for
modal parameter identifica (on and model reduction for dynamical systems from
test data. The algorithm consists of two major parts, numely, basic formulation
of the minimum order realization and modal parameter identification. In the
section of basic formulation, the Hankel matrix which represents the aata
structure for Ho-Kalman algorithm is generalized to allow random distiribution
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of Markov parameters generated by free decay reponses. A unique approach
based on this generalized Hankel matrix is developed to extend the Ho-Kalman
algorithm in combination with the singular value decomposition technique [10-
11?. Through the use of the generalized Hankel matrix, a linear model is realized
for dynamical system matching the input and output relationship. The realized
system model is then transformed into modal space for modal parameter identifi-
cations. As part of ERA, two accuracy indicators, namely, the modal amplitude
coherence and the modal phase collinearity, are developed to quantify the
system modes and noise modes. The degree of modal excitation and observation
are evaluated. The ERA method thus forms the basis for a rationai choice of
model size determined by the singular values and accuracy indicators.

Two examples are given to illustrate the ERA method. The first example
uses simulated data from an assumed structure. The effect of repeated eigenvalues
on the parameter identification is shown. The second example uses experimental
data from 1 simple grid structure. Comparison of the ERA results with a finite
eiement model of the grid is performed. Experimental results for a more complex
structure--the Galileo spacecraft--are shown in Ref. [19].

II. BASIC FORMULATIONS

A finite-dimensional, discrete time, linear, time-invariant dynamical
system has the state-variable equations

x(k+1) = Ax(k) + Bu(k) (1)
y(k, = Cx{k) (2)

where x is an n dimensional state vector, u is an m dimensional control input,
and y is an p dimensional output or measurement vector. The integer k is the
sample indicator. The transition matrix A characterizes the dynamics of the
system. For flexible structures, it is a representation of mass, stiffness
and damping properties. The problem of system realization is then the follow-
ing. Given the measurement functions y(k), construct constant matrices [A, B,
C] such that the functions y are reproduced by the state-variable equations.
With different sets of inputs and outputs, several c2ses can be obtained. The
simplest case, namely, single input and single output, is treated first to
allow the reader familiar with notations for the treatment of multi-input and
mliti-output cases.

Single input and single output

For the system (1) with free pulse-response (or initial-state-response),
the time-domain description is given by the function known as Markov parameter

y(k) = CAK=1B [or y(k) = CAkx(0)] (3)
where x(0) is the system initie” -onditions and k is an integer. Note that the

matrix B is a column vector (si.yie input) whereas the matrix C is a row vector
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(single output). For free initial-state-response, the matrix B only represents
the information of initial conditions rather than the control influence matrix
as shown in £q.(1). The problem of system realization is to construct matrices
[A, B, C] in terms of the measurement function y(k) such that the identities of
Eq.(3) hold. Now observe that

y(k) = VAK=18 [ or y(k) = VAKx(0) ] (4)
where
_ y(k) ] [c
y(k) = ly(k+l) ; and V= |[CA (%)
y(k+n-1) ] can-1

Assume that this nth order system has no repeated eigenvalues. There exists
a row vector C from observability theory (Ref. 18) such that V has rank n.
Consequently, rearranging Eq. (4) becomes

y(k+1) = VAKB = vAV=-ly(k) (6)
Given the sequence of measurement vectors y(k+l), the generalized Hankel

matrix H(k) is defined as
_ _ y(k)  Ly(k+1) ,..., y(k+n-1)
H(k-1) = (y(k), y(k+1},coe, Y(k+n)] = [y(k+1) ,y(k+2) ,..., y(k+n) (7)

y(k+n=1) ,y(k+n),...,y(k+2n-2)

It immediately follows from Eq.(6) that

H(k) = VAV=TH{k-1) = VAKy=1H(0) (8)
or from Eq. (4) that

H(k) = VAK[B, AB,..., AK=1B] = VAKNW (9)
where W is a controllability matrix (Ref. 18). Again if the system with order
. has no repeated eigenvalues, there exists a column vector B such that W has
rank n. This means that H(k) is invertible if the system is controllable and
observable. Letting k = 1, Eq. (8) will then determine the state matrix A in
the following way

vav=1 = H(1)H-1(0) (10)

To rigorously prove this result, define E as the column vector £¥=[1,0,...,0].
The measurement function y(k+l) can then be written by

y(k+1) = ETH(k)E = ETH(k)H=V(0)H(O)E = ET[H(VIN-1(0)IKH(D)E (11)
with the _aid of Eqs. (8) and (10). Hence by Eg. (3), the triple [H(1)H-1(0),
H(0)E, ET) is a realization in the sense that if the triple [A, B, C] in the

302



system equations (1) an (2) is replaced by the [H(1)H-1(0), H(0)E, ET], the
measurement functions y(k) are reproduced as proved in Eq. (11). In other
words, state variable equations (1) and (2) are transformed to the following
equations

X(k+1) = H(V)K-1(0)x(k) + H(0)Eu(K) (12)
7(x) = ETx{(k) (13)
where x(k) = v-Ix(k). (14)

let us summarize the case as follows.

A finite-dimensional, discrete time, linear time invariant dynamical system
with a single input and a single output is realizable if the state matrix A has
no repeated eigenvalues, and the system is controllable and observable.

Multi-input and Multi-output

The time-domain description for this case is given by the pulse-response
(or initial-state-reponse) function known as Markov parameter

Y(k) = CA*"18  (or Y(k) = CAK[x(0),x5(0),...,x,(0)]) (15)

where xj(0) represents the ith set of initial condition and k is an integer.
Note that B is a nxm matrix and C is a pxn matrix. The problem of system
realization is that, given the functions Y(k), construct constant matrices [A,
B, C] in terms of Y(x) such that the identities of Eq. (15) hold. The algorithm
begins by forming the rxs block matrix (generalized Hankel matrix)

v(k) bv(k+tl) ,.,..Y(k*ts-l)
Hrg(k=1)=|Y{j1+k) ,Y(i1tk+ty) ..., V(iytketg ) (16)

lY (J l‘-l*k) »Y (J r-1+k+t1) sevesY (jr-l"’k*ts-l )

where jj(i=1,...,r-1) and ty(i=l,...,5-1) are arbitrary integers. For the
system with initfal-state-response measurements, simply replace Hpg(k-1) by
Heg(k)e It is easy to prove from Eq. (15) that Eq. (9) also holds for
this multi-input and multi-output case,

c N
j t,. tg_
Heg(k) = VAKWg 5 Vo = |CA' | and Wg = [B,A 1B,...,A S"18] (17)

eadr-1

where V. and Wg are respectively the observability and controllability mai-ices
in a general sense. Note that Vp and Wg are rectangular matrices with dimensions
rp x nand n x ms respectively. Assume that there exist a matrix H# satisfying
the relation
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WV, = I, (:3)
where I, is an identity matrix of order n. Define Op 2s 2 null matrix #ith
order P, ET [lp op".'l u] and En' = [% 0”'...' 0"] Iﬂ View of Eqs.

{(16) and (18), the measurement function Y(k+l) can be obtained through eithar
of two algorithms Al and A2. The algorithm Al is

Y(k+1) = Eghpg(k)Eq = ENVAXNSHIV N E,
= gLV ANgHFIEV M GE,
= EglH o (1)KL (0)E, ’9)
and the algorithm AZ is h
Y(k#1) = EJH.(K)Eg = EQV W HIV ARNE,
= EpV s THPv i TE,
- s‘u,s(o)[u'n,sun"s. (20)
kence, by Eq.(15), (1)HP, i SB] or [u’ (1), & -E& 4(0)]

is a realization. There f no dou tha matrix plays or role in
solutions (19) and (20). uWnhat is H#? (Observe that, from Eqs. (17) and (18),

Heg (0 HPH_(0) = VM HIV Mo = V Mg = H.c(0) (21)
w¥ is a pseudo-inverse of HrS(O) in a general sense. When the rank of “rs(o)
equals to the column number of H..(0), then H'-[[Hrs(O)]1hrs(0)]“[Hrs(O)]T.
If the rank equal% to the row number, then H'-[H (O)JTIH (0)[H (0)] ]'1
The matrix H. (1) has been used in structural dynanics area to jdentify
system modes ' and frequencies.}3 Both are special cases representing either
single input or single output which can not realize a system that has repeated

eigenvalues, or a noise-free system unless the system order is a priori known.
A general solution for H¥ is given below.

lgb{ an nth order system, find the nonsingular matrices P and Q such
thatiY, ..

Hpg(0) = POQT (22)
where tha rpxn matrix P and the nxms matrix Q7 are isometric matrices (all the
columns are orthonormal), leaving the singular values of Hpg(0) in the diagonal
matrix D with positive elements ([d},dp,...,dn] The rank n of Hpg(0) is

determined by testing the singular values or zero (relative to desired
accuraqy) which will be described 1n the next section. Define

Hp(0)= POQT = [POJIQT] = PyQT (23)
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tach of the four matrices [PJ,QT,HS,VI] has rank and row number n. By
Eq.{17) with k=0,

VoW = Heo(0) = PyQT (24)
Multiplying on the left by Pg and solving for QT yields
g = (ngd)-]ngr“s -qf (25)

T is nonsingular because y\f U = HSQ(QTQ)'lg W,Q, then TU= I by Eq. (25). Since
TU = 1 =UT for nonsingular T acd ! then

wla(Plp ) -tPlIv, = 1 (26)
Yepce, by Eq. (18) .
wt= [QIL(PIP4)"'Pd1 = [adCo-leT) = opf (27)

The dimension of matrices (¢ and Pﬁ with rank n are respectively msxn and
nxrp. To this end, summarize the case as follows.

A finite-dimensional, discrete time, linear time-invariant dynamical system
with multi-input and multi-output is realizable in terms of the measurement
function if the system is controllable and observable.

Note that no restrictions on system eigenvalues are given for this case.
In other words, this technique can realize a system with repeated eigenvalues.
The system (1) with this realization will be transformed into the following

equation
X(k+1) = Ho (1 HX(K) + H.(0)Eu (28)
y(K) = EXX (k) (29)
where x(k) = VSH‘x(FD. or (30)
X(k+1) = HPH S (V)X(K) + Equ (31)
y(K) = EgHpg(0)X(K) (32)
where Xx(k) = Wgx(k) (33)

The realizations (28)-{33) are not of minumum order, since the dimension of X
is the number of either columns or rows of the matrix Hpg(0) which is larger
than the order n of the state matrix A for multi-input and multi-output cases.

With the aid of Eqs.(17), (18) and (27), a minimum order of rea'ization
can be obtained from
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Y(k#1) = EHeg(K)E, = ENVAKMGE,

Ty w
Ep VoWV AN HPY W E,

Eqtes(0)QPAV AKW QPR (0) €,
Eprs (0)QLPEH. (1)01%PAH, < (0)E,
EpPolPAH.s(1)a2%aTE, (34)

where Eq.(23) has been used to obtain the last equality. This is the basic
formulation of realization for ERA.

f

The tnple (P¥H s(1)Q, Q E,e Elp ¢) s a minimum realization, since the
order n of P H 90 equals to the imenswn of the state vector x. The same
solution in a dlfferent form for the case where jj = tj = i (i=l,...,r-1) can
be obtained by completely different approach as shown in Refs. [3 & 20]. The
system {1) with this realization is written as

X(k+1) = PAH_(1)GX(K) + QTE (35)

y(k) = ETPgx(K) (36)
where -

x(k) = WgQx(k) (37)

A simple exercise such as replacing V(k+l) by Y(k) in Eqs.(19), (20) and (34)
shows that all the algorithms developed above are also true for the realization
of a system with initial-state-response.

Examination of Eqs. (19), (20) and (34) reveals that algorithms (Al) and
(A2) are special cases of ERA, Al is formulated by inserting the identity
matrix (18) into the right hand side of the state matrix A as shown in Eq.
(19). On the other hand, A2 is obtained by inseriing the identify matrix (18)
into the left hand side of the state matrix A as shown in Eq. (20). However
the aigorithm ERA is formed by inserting the identity matrix (18) into both
sides of the state matrix A as shown in Eq. (34). Because of the different
insertion, Al and A2 do not minimize the order of the state transition matrix.
Mathematnally, if the singular val : decomposition technique is not included
in the computational procedures, Al and A2 can not be numerically implemented,
unless a certain degree of artificial noise and/or system noise are present.
Noises tend to make up the rank deficiency of the generalized Hankel matrix
Hrg(0) for algorithms Al and A2. Since the degree of noise presence is generally
unknown, algorithrs Al and A2 are not recommended. :

IT1. MODAL PARAMETER IDENTIFICATION AND MODEL REDUCTION

The presence of almost unavoidable noise and structural nonlinearity
introduces uncertainty about the rank of the generalized Hankel matrix and,
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hence, about the dimension of resulting realization. By employing the singular
value decomposition (SVD) technique, the rank structure of the Hankel matrix
can be quantitatively displayed. The set of singular values can be used to
Jjudge the distance of the matrix with determined order to a lower-order one.
Therefore, the structure of the generalized Hankel matrix can be properly
exploited to efficiently solve the realization problem. These include an
excellent numerical performance, stability of the realization and flexibility
in determining order-error tradeoff.

Assume that, by Eq. (22)

D = Diag. [dy, d9,eeesdnsdpe]seees d)d (38)
with
d]l y)oool dn _>_ dn+]looo_>_ dN (39)

If the matrix Hrg(0) has a rank n then all the singular values dj(i=n+l,...,N)
should be zero. When singular values dl(i-n+1,...,N) are not exactly zero but
very- small, then one can easily recognize that the matrix hpg(0) is not far
away from a n-rank matrix. However, there can be real difficulties in deter-
mining a gap between the computed last ncnzero singular value and what should
be effectively considered zero, when measurement noise is present. Possible
sources of the noise can be attributed to the measurement signal, computer
round-off and instrument imperfections,

look at the singular value d, of the matrix Hpg(0). Choose a number &
based on measurement errors incurred in estimating the elements of Hpg(0) and/or
round-off errors incurred in a previous computation to get them. If § is
chosen as "“zero threshold" such that & < d,, then the matrix Hpg(0) is
considered to have rank n. Unless information about the certainty of the
measurement data are given, the number & 1is defined as a function of the
precision limit in the computer machine. For example, & =d,/d} cannot exceed
the precision limit. Ffurther details are found in Ref. [11].

After the test of sir :lar values, assume that the matrix [PﬁHrs(k)Q} has
rank n. Find the eigenvalu2s . and eigenvectors ¥ such that

v PR (K)QDY = 2 (40)

The modal damping rates and damped natural frequencies are simply the real and
imaginary parts of s, after transformation from the z- to the s- plane using

the relationship
s = [(Inz) + 2jn 1/(kax) (1)

where At is the uata sampling interval and j is an integer. Note that k is
generally chosen as 1 for simpiicity. Although z and y are in complex domain,
computation of Eq.(40) can be performed in the r2al domain (Ref. 21) sirce the
state matrix realized for most flexible structures has independent eigenvectors.

The triple £ 2z, ¢‘]QTEm, g;?d¢ ].fs obviously a minimum order of realiza-
tion s‘mqu by observing Eq. (33). Edew is called sensor modal displacements
and v™'Q initial modal amplitudes. To quantify the system modes and noise
modes, two indicators are developed as follows.
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Modal Amplitude Coherence y

If the information about the uncertainties of the measurement is minimum,
the rank thus determined by the SVD becomes larger than the number of excited
and observed system modes to represent the presence of noises in modal space.
In modal parameter identification, the indicator referred to as modal amplitude
coherence is developed to quantitatively distinquish the system and noise

modes. Based on the accuracy parameter, the degree of thie modal excitation
(controllability) is estimated.

The modal amplitude coherence is done by calculating the coherence between
each modal amplitude history and an idea one formed by extrapolating the initial
value of the history to latter points using the identified eigenvalue. Let
the control input matrix (initial condition) be expressed

v1QTE, = [51,bpse0ubd". (42)

whera * means transp.se and complex conjugate, and the 1 x m column vector b
corresponds to the system eigenvalue Sj(j-u,...,n). Consider the sequence

E:; = [b;,exp(tlmsj )bg, ces ,exp(ts_lAtsj )b}] (43)

which represents the ideal modal amplitude in complex domain containing
informations of the magnitude and phase angle with time step At . Now, define
vectors q; such that

v10T= [4),95,04009,0" (44)

The complex vector qj represents the modal amplitude time history from the real
measurement data obtained by the decomposition of .ne Hankel matrix. Llet v
be defined as the coherence parameter for the jth mode, satisfying the relation

-ty -t
Yy = |a;QJ|/(|QJQj||Qij|)1/2 (45)

where | | represents the absolute value. The parameter yj takes only the values
between 0 and 1. vyi * 1 as q;j *+ q; indicates that the realized system
eigenvalue sj and the Qnitial al amplitude bj are very close to the true
values for the jth mode of the system. On the other hand, if vj is far
away from the value 1, the jth mode is a noise mode. However, to make a clear
cut between the system modes and noises requires further studies. Obviously,
the parameter yj quantifies the degree to which the modes were excited by
a specific inpu%, ji.e. the degree of controllability.

.

Modal Phase Collinearity u

Fur lightly damped structure, normal mode behavior should be observed, An
indicator referred to as the modal phase collinearity is developed to measure
the strength of linear functional relationship between the real part and the
imzginary part of the sensor modal displacement (mode shape) for each mode.
Based on the accuracy indicator, the degree of the modal observation 1is
estimated. Define
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Egpdw = ECIQCZ)OQ-,CH1 (46)

where c-(J=1,2,...,n) is the sensor modal displacement corresponding to the
Jth realized mode. Let the column vector 1 of order p be

1T = [1,1,...,1] (47)

in which p is the number of sensors. Now compute the following quantities
for the jth mode shape.

c; = c}}/p (48)
Cpp = [Real(c;-Z51) 17 [Real (¢5-€;1)] (49)
Crj = [Real(cj-Esl))T[Imag(cj-Eﬁl)] (50)
ciy = [Imag(c;-c;1) 1T Imag(c;-c;1)] (51)
e= (cjj = cpp)/2cpy (52)
© = arctan[e + sgn(e)(1 + e2)1/2] (53)

where Real( ) and Imag( ) respectively ar= the real part and imaginary part of
the complex vector ( ), and sgn( ) is ine sign of the scalar ( ). The modal
phase collinearity ¥j for the jth mode is then defined as (Ref.22)

ui = | cpp + cpil2(eZ41)sin?(8)-1/e }M(cpopteyi) 5 3=1,2,00u,n (54)

This indicator checks the deviation from 00 - 1800 behavior for components of
jth identified sensor modal displacement. The parameter uj takes only the
vaiues between 0 and 1. uj + 1 indicates that the accuracy of the modal
displacement is high. On the other hand, if u;j is away from 1, the jth mode
is either a noise mode or high damping is preseﬁ%.

Model Reduction

The dynamicel system is composed of an interconnection of all the ERA
identified modes. The accuracy indicators allow one to determine the degree of
individual mode participation. Model reduction can then be made by truncating
all the modes with low accuracy indicators. The accuracy of the complete modal
decomposition process can be examined by comparing a reconstruction of Y(k)
formed by Eq.(35) with the orginal free decay responses, using the reduced
model .

IV. SUMMARY OF ERA

A flowchart of the procedures to be followed to use ERA in system model
identification is presented in figure 1., The computational steps are summarized
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as follows:

1. Construct a block-Hankel matrix Hpg(0) by arranging the measurement
data into its rows with given r, s, ty (i =1, 2,..., 5=1) and jj (i =1, 2,...,
F-]), (qu ]6)-

2. Decompose Hpg(0) using singuiar value decomposition (Eq. 23).

3. [Determine the order of the system by examining the singular values of
the Hankel matrix Hpg(0) (Eq. 38).

4, Construct a minimum-order realization (A, B, C) using a shifted block-
Hankel matrix (Eq. 34,.

5. Find eigensolutions of the realized state matrix (Eq. 40) and compute
the modal damping rates and frequencies. (Eq. 41).

- 6. Calculate the coherence parameter (Eq. 45) and the collinearlity
parameter (Eq. 54) to quantify system modes and noise modes.

7. Determine the reduced system model based on accuracy indicators,
reconstruct function Y(k) (Eq. 35) and compare with measurement data.

Note that the determination of r, s, ty and jj in Step 1 above requires
further development. This determination 1is related to the choice of the

measurement data to minimize the size of the Hankel matrix Hpg(0) with the rank
unchanged.

V. EXAMPLES: SIMULATION AND EXPER IMENT RESULTS

To illustrate the ERA method, two examples are given. First, a numerical
problem will be posed and solved for an assumed structure with distinct and
repeated frequencies. Second, experimental data for a simple, two-dimensional,
grid structure as shown in Fig., 2 is used and realized in terms of a linear
system. Experimental results are compared with those predicted by a finite
element model.

Numerical Simulation

Figure 2 shows a representation of a typical flexible structure. The
dynamical equation for this typical structure with initial-state-response in
terms of system modes in moda! space can be written as:

dg/dt = A g (55)'
y=Tg (56)

where A is a canonical matrix with the diagonal blocks {A},..., Ay},
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g is the generalized modal amplitude and C is the generalized sensor influence
matrix. The quasi-diagonal matrix Aj (j=1,~==,k) has the matrix form

" & w5
J J

Ay = t (57)
) IR

The complex values &§j + iwj are the eigenvalue of the frame structure.

Given a model described as in Eq. (55), results of some numerical simulation
using the ERA scheme can be summarized in the sequel. Two cases will be given
including systems with and without repeated eigenvalues. The numerical test is
performed by taking as “data" y the output values of the solution of a model
with the form (55) whose parameters A, C and initial condition g(ty) are
known. In the analysis of physical systems, experimental methods generate the
measurement data y. It is then desired to realize a system by using the data y
and compare with the known model,

Case [: A model with distinct eigenvalues

Assume that parameters such as bending rigidity, mass density and damping
coefficient of the assumed structure are adjusted to give

|-0.01 Xj j

AJ'-

3 3=1,2,3,4,5 (58)
-3 -0.01xj

To illustrate applications of ERA in a single input and single output case, A
sensor is chosen and located to give
t=0,0,1,0,1,0,1,0,1,0] (59)
Let the initial condition for free decay responses be
gT(ty) = [0,1,0,1.0.1.0,1,0,1] (60)
Then the functions y with a sample time interval 0.05 second generated

from the model (55) with known parameters (58), (59) and (60) are used as
measurement data for the ERA procedure.

Using jj = tj= i and r=s=90 in Eq. 16, the ERA realization of a dynamical
system is

¢ = (0.709,2.529,-0.347,-1.706,0.814,-1,182,-1,382,-0.276,1.129,1.257)  (61)
gT(to)=[0.\03,0.367,-0.1]4,-0.563,0.395,-0.574,-0.696,-0.\39,0.396,0.440](62)

and A is identical to that shown in Cq. (58) with the accuracy close to the
precision limit of the computer. In the procesgdgf realization, the number

§ =d,/dy as defined in tq. (38) is set to be 107'°, The singular values of
the generalized Hankel matrix Hn.g(0) are
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D = [49.86,44.84,33.69,27.64,23.69,21.04,13.57.10,95.6.374.5.508) (63)

All the values d; (, =11,..., 90) which has the number d;/dy less than 10-12
are considered td be zero. The rank of the Hankel matrix Hpg(0) is obviously
ten which is identical to the order a priori given in Eq.(58). The realized
state matrix is a minimum order of 10 and the eigensolutions are obtained from
this 10 x 10 matrix. All the parameters for modal amplitude coherence (Eq.45)
and modal phase collinearity (Eq. 54) are 100%. Although Eqs. (61) and (62)
are a different realization from the system (59) and (60), they are equivalent
in the sense that a unitary transformation and normalization will make them
equal.

By forming the matrices V in Eq. (5) and W in Eq. (9) with the aids of

Eqs.(58)-(60), the reader can see that this realization is controllable and
observable.

Case II: A model with repeated eigenvalues and independent eigenvec*or

Assume now that the system model is represented by

-0.01 1.0
M= Ap = (64)
1-1.0 -0.01
and
f.01xj  § ]
Aj = J i=3,4,5 (65)
-j  -0.01xj

Using the same process as last case, the ERA realization simply miss the repeated
eigenvalue Aj. The result is expected since, by control theory for a linear
system, single input or single output does not make a system with repeated
eigenvalues and independent eigenvectors controllable or observable. It can
be verified that the matrices V in Eq. (5) and W in Eq. (9) formed by Egs.
(59), (60), (64) and (65) have rank 8., Multi-input and multi-output must be
used to realize such a system. Let two sensors be chosen and located such

that
f1,0,1,0,1,0,1,0,1,0
C= (66)
0,0,1,9,1,0,1,0,1,0
and two initial conditions for free decay responses
T 0,1,0,1,0,1,0,1,0,1
g'(ty) = (67)
0,0,0,1,0,1,0,1,0,1

Note that the rows in Eqs. (66) and (67) are independent., For each initial
condition, a series of "measurement" funciion y with a sample time interval
0.05 second can be generated from the mod2l (55) where each y in this case is a
vector with two elements for two different sensors. The free decay function
Y in Eq. {15) is then a 2 x 2 matrix. Using that jj =ty =1 and r= s = 45
for Eq. (16), the ERA realization for a dynamical system is then
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C= b.135,-1.686,0.155,-0,]72,0.11],-0.032,0.099,0.035,0.195,0.17i}
(68)

|-0.004,0.107,0.142,-0.136,0.111,-0.032,0.099,0.035,0.195,0.177
-0.014,-0.457,3.840,-3.692,8.338,-2.405,8.9¢.,3.181,2.818,2.5¢4
g'(to)= (69)
-0.051, 0.092,3.€05,-3.508,8.338,~2.406,8.956,3.181,2.818,2.554
where A is identical to that shown in Eqs.(64-65)., The singular values D are
D=[70.16,44.32,37.97,25.75,11,18,9.050.7.950,3.873,0.127,0.026] (70)
The seme error window &=dn/dy as last is used. All the parameters for modal
amplitude coherence and modal phase colinearity are 100%. Again, Eqs. (68-69)
and Eqs. (66-67) are equivalent in the sense that a unitary transformation and
normalization will make them equal. The reader can easily verify that this
realization is controllable and observable. -

Sample Experimental Results

A sample set of modal identification results that have been obtained from
laboratory .est data using ERA are included in this section. The test article,
shown in Fig, 2, is a7 ft by 10 ft flexible grid structure that will be used at
NASA Langley for vibration control experimentation. It is constructed of over-
lapping aluminum tars of 1/4 in. by 2 in. cross section, riveted together at
one-foot intervals. Four rivets are us2d at each joint to provide a tight
connection. The structure is s..pended from a stiff overhead beam using two
short cables attached to the top horizontal member. The results to be shown
are from a preliminary dynamics test of the grid. It was conducted by exciting
the structure with an airjet and measuring the free vibration response using
nine non-contacting proximity sensors. The response sensors were attached to
a stiff frame located adjacent to the grid for the measurement of out-of-plane
motions. Eight different excitation frequencies corresponding to resonant
responses were used. The sampiing rate was 32 samples per second.

The ERA analysis was performed using 2 singie matrix of data from all
nine response measurements and eight initial conditions. Each response func-
tion Y as shown in Eq. (16) was thus a 9 x 8 matrix. The Hankel matrix Hpg
of 72 rows by 400 columns was formed to perform the analysis. Table 1 provices
2 comparison cf the ERA results with analytical prediction from a NASTRAN
finite-element model. The entries in the center of table are correlation
coefficients in percent between each ERA-identified mode shape and each NASTRAN
mode shape. High correlation values indicate good agreement between the two
shapes. The results show reasonable agreement in both:frequencies and mode
shapes, except for the damping result of the first mode. The main reason for
the first mode discrepancy is inadequate data length. Only 50 data points were
used which corresponds to less than one cycle of data for the first mode. The
results can be improved by using more data points. Note that few high correla-
tions occur for some modes with significantly different frequencies. This is
because only 9 sensors were used in comparison. More detailed experimental
results for a complex structure are shcwn in Ref.[19].
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CONCLUDING REMARKS

An Eigensystem Realization Algorithm (ERA) 1is aeveloped for parameter
identification and model redu<tion for dynamical systems. Twt developments
are given in this paper. First, a new approach is developed to derive the
basic ERA formulation of minimum realization for dynamical systems. As by-
products of this approach, two alternative less powerful algorithms, identi-
fied as Al and A2, are derived. A special case of Al is shown to be equiva-
lent to an approach currently in use in structural dynamics. Second, accu-
racy indicators are developed to quantify the partipatior of system ~cres
and noise modes in the realized system model. In other words, degrec¢ of
controllability and observability for each participatea mode is determined.
A model reduction can then be made for controller design.

important features of the ERA algorithm are summarized as follows.
(1) From the computationai standpnint, the algorithm is attractive, since
only simple numerical operations are needed; (2) the computational procedure
is numerically stable; (3) the structural dynamics requirements for rodal
parameter identification and the control design requirements for a reduced
state space model are satisfied; (4) data from more than one test can be used
simultanzously to efficiently identify the closely spaced eigenvalues; (5) no
restrictici:s on number of measurements are imposed.
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